2,825 research outputs found

    The magnetic field of the evolved star W43A

    Full text link
    The majority of the observed planetary nebulae exhibit elliptical or bipolar structures. Theoretical modeling has indicated that magnetically collimated jets may be responsible for the formation of the non-spherical planetary nebulae. The aim of this project is to measure the Zeeman splitting caused by the magnetic field in the OH and H2O maser regions occurring in the circumstellar envelope and bipolar outflow of the evolved star W43A. We report a measured magnetic field of approximately 100 micro-gauss in the OH maser region of the circumstellar envelope around W43A. The GBT observations reveal a magnetic field strength B|| of ~30 mG changing sign across the H2O masers at the tip of the red-shifted lobe of the bipolar outflow. We also find that the OH maser shell shows no sign of non-spherical expansion and that it probably has an expansion velocity that is typical for the shells of regular OH/IR stars. The GBT observations confirm that the magnetic field collimates the H2O maser jet, while the OH maser observations show that a strong large scale magnetic field is present in the envelope surrounding the W43A central star. The magnetic field in the OH maser envelope is consistent with the one extrapolated from the H2O measurements, confirming that magnetic fields play an important role in the entire circumstellar environment of W43A.Comment: 6 pages, 5 figure

    Ground-state phases of rung-alternated spin-1/2 Heisenberg ladder

    Full text link
    The ground-state phase diagram of Heisenberg spin-1/2 system on a two-leg ladder with rung alternation is studied by combining analytical approaches with numerical simulations. For the case of ferromagnetic leg exchanges a unique ferrimagnetic ground state emerges, whereas for the case of antiferromagnetic leg exchanges several different ground states are stabilized depending on the ratio between exchanges along legs and rungs. For the more general case of a honeycomb-ladder model for the case of ferromagnetic leg exchanges besides usual rung-singlet and saturated ferromagnetic states we obtain a ferrimagnetic Luttinger liquid phase with both linear and quadratic low energy dispersions and ground state magnetization continuously changing with system parameters. For the case of antiferromagnetic exchanges along legs, different dimerized states including states with additional topological order are suggested to be realized

    From the ashes: JVLA observations of water fountain nebula candidates show the rebirth of IRAS 18455+0448

    Get PDF
    [abridged] The class of water fountain nebulae is thought to represent the stage of the earliest onset of collimated bipolar outflows during the post-Asymptotic Giant Branch phase. They thus play a crucial role in the study of the formation of bipolar Planetary Nebulae (PNe). To date, 14 water fountain nebulae have been identified. The identification of more sources in this unique stage of stellar evolution will enable us to study the origin of bipolar PNe morphologies in more detail. We present the results of seven sources observed with the JVLA that were identified as water fountain candidates in an Effelsberg 100m telescope survey of 74 AGB and early post-AGB stars. We find that our sample of water fountain candidates displays strong variability in their 22 GHz H2O maser spectra. The JVLA observations show an extended bipolar H2O maser outflow for one source, the OH/IR star IRAS 18455+0448. This source was previously classified as a 'dying' OH/IR star based on the exponential decrease of its 1612 MHz OH maser and the lack of H2O masers. We therefore also re-observed the 1612, 1665, and 1667 MHz OH masers. We confirm that the 1612 MHz masers have not reappeared and find that the 1665/1667 MHz masers have decreased in strength by several orders of magnitude during the last decade. The OH/IR star IRAS 18455+0448 is confirmed to be a new addition to the class of water fountain nebulae. Its kinematic age is approximately 70 yr, but could be lower, depending on the distance and inclination. Previous observations indicate, with significant uncertainty, that IRAS 18455+0448 has a surprisingly low mass compared to available estimates for other water fountain nebulae. The available historical OH maser observations make IRAS 18455+0448 unique for the study of water fountain nebulae and the launch of post-AGB bipolar outflows...Comment: 8 pages, 5 figures, accepted for publication in A&A (revised minor typos

    Secondary Hyperparathyroidism in chronic kidney disease patients; current knowledge

    Get PDF
    When renal function diminishes, secondary hyperparathyroidism with develop in response to worsening of kidney function and declined phosphate excretion (1). Dysregulation of phosphorous and calcium homeostasis leads to decreased kidney phosphate excretion, raised serum phosphorous, reduced synthesis of calcitriol, and elevated levels of the phosphatonin fibroblast growth factor 23 (FGF-23)(2-4). These alterations result in parathyroid hyperplasia and enhanced synthesis and secretion of parathyroid hormone
    • …
    corecore